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INTRODUCTION

Deep inclastic scattering (DIS)" process is one
ol the basic processes formvestigating the structure of
Fadrons T well bnown,all information abeut the
strachne of hadrons participating in DIS comes {rom
the hadromc structure functions. According 1o QC,
at sadh value of X and at farge values ol Q7 hadions
consist predomimately of gluons and seo quarks, where
vand Qare Bjorken scaling variable and four
momentum transferin a DIS process respectively. The
Daokshitzer - Githov - Lipatov - Alaralli - Parisi
DGLAP) evolution equations®* give 1= In Q/A%). A
i the QUD cut olf parameter] and x evolutions of
structure Tunctions. Jeace the solutions of DGLAP
cvolution equations give guark and gluon structure
functions that produce ultimately proton, neutron and
denteron structure functions.

Among vanous mmethods for sobving DGLAP
cuolution equations, N recent YEars, an approximale
method sotalide at sall-x has been porsired with
consuderable phenomenolopical success” 7 That
tethod i vers simphe and nathenatically tansparent.

In that approach, the DGLAY eqnations are expressed
as partial differential equations PDEY mx and tusing
the Taylor series expansion of some structure functions
valid 1o be at small-x and - particular solotions of the
cquations faave been obiined by ditterent arbirrany
lincar combinations of Uand Vol the general colution
U, Vy=0. Butone of the limitations of these solutions
is that, as the evolution equations are 'DE their ordimary
solutions are notunique solution, but a range of solutions,
of course the range is very narrow. On the other hand.
this limitation can be overcome by using method of
characteristies™ 1,

The method of charactenstics is an important
technique for solving initial value problems of fnstorder
PRE. ICwms oun that il we change co-ordimates trom
(5. ) 1o suitable new co ordinates (8, ) then the PDE
becomes an ordinary ditferential eqrration (ODE) Then
we can solve ODE by standand method. In freure 1
the co-ordinaies S, 0 are considered as the value of §
are changed along o vertical civy hoe where ©is
constant and T ehianges along o honzontal curvy line
where S is constant. For tevolutong we consider as S
chanpes alony the charcteristic conve v S8,
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here Ay = ———— .
where %o = 3RTEL ' <N, being the favor number,
Letus introduce the s ariable u = 1-w and note

(4)
i
= Since x<w<l, 50 O<u<l-x and hence tle series 4} is
) o convergent for ful<]. Now
S
) x A I i
. o — T =x| 1+ -1 |= R
Xr"" wool=-u ( 1= u ) ( l—uJ'

¥

7; '/; "/; LLLLLLL

)

So, using Taylor's expansion series we can rewrite

o[ X X
[‘,’(—-l] and G(—,1) s
W W

BN AR R X+
‘\w . l—u

, B (xt) (e YOE (xt)

=F(x1)+2 ! L i

> (x4) -1 ox i 1-u ox* ¥
=Ff(x,t)+ e M' (3a)

l-u  Ix
and
G

u(—t) G(x,t)+ — s 9 (“). (3b)

W l-u  oOx

-\ Since x is small in our region of discussion, the terms
containing x* and higher powers of x are neglected.

~ Using equation 5a) and 5b) in equation 3a) and 3b) and
= performing u-integrations we get

~J 1000 = {-342x4x 7 R (X0 + {x- x°-

IF; (x,t)

X

2xIn(x)} (6a)

LJ’ 1_; 1) lj 1) /,e
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3 3 , 2 3
I:‘ (.\.1): i{NJH-'; DR R ;‘\' ](i(,\‘.f)-f-

M 2 ’l(‘ ’)]
2 I () ) — =
1 3 \ ving ) B | (Gh)

Putting equations 6a) and 6b) in equation 1) we get

ary (1) A

[' [A(\)I'J (o) B()

at
ar FC(G(x, )+ D (v )J('(‘ | 0(7)
where
A(.r)=2.t+,\'3+4ln(l-.r). (8a)
B(x)zx-x‘ -2x In(x). (8h)

3 2 1

Clx)==N,|=—x+x*-Zx Q
() ) 1(3 J (8¢) .

3 5 ; 2
Dix)==N |-Z43x" =2 =Zx' —xIn(x :
Since the DGLAP evolution equations of gluon' and
singlet'” structure functions in LO are in the same form
of derivative with respect to t. so we can assume
Gx,)=kx)F’x,u), 9
where k x) is a suitable function of x or may be a
constant. We may assume k x) = k, ae”*, cx?, where k,
a. b, ¢, d are suitable paramete-s which can be
determined by phenomenologiczl anaivsis. Of course k
may be a function of t also.
Now equation (7) gives

_OF (xn) OF (1)
o 9

M= A LE () =00 (10)
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Figure 1. Characteristic eurve. For constanty aluesof T(1,1
» Te=)s the values of 8 change along a vertical characteristic
curve. On the other hand, along a horizontal characteristic
curve, the values of T change for constant values of 8 (S, S,
S, .+ inthe 1-x plane,

{}<S<°° | and 1 changes along the initial (1 = 1) curve.
On the other hand, for x-evolution. T changes along the
characteristic cunve [x (7). 1 (1); 0 < T <] and S
changes along the initial curve x = x). Along the
characteristics curve we get one ODE with one
boundary condition. After solving it and transforming
S. 1) again 1o x, 1) we get unique solution.

In this paper, we obtain a solution of DGLAP
equations for singlet and non-singlet structure functions
at small-x at LO by using this method of characteristics.
The result 1s compared with NMC data' for deuteron
structure function. Here the section | is the introduction,
section 2 deals with the necessary theory and section 3
is the results and discussion.

THEORY

Let us consider a first order linear PDE
alx, W, +blxa ), +c(x, 1)U =0 with initial

condition Ugx, 0) = f(x). Then the poal of the method
of characteristics when applied to this equation, is 1o
chanpe the coordinate svstem from. (x, 1) 1o 4 new
coordinate system (x. 8) in which the PDE becomes
an ODE along certain curves in the x-t plane. Such
curves, along which the solution of the PDE reduces 1o
an ODE, are called characteristic curves or
characteristics. The new variable S will vary, and the
new vartable x o will constant along the characteristics
The variable x will change along the initial curve in the
x-t plane (along the line t=0). If we consider

dx

di
—_—=a .\'.’) ﬂllkl "ES' = I)(.\'.f) [hcn we h"vC
[t

ds
dU  dx di
==SU.+—2U,  =alxt) U, +bl
ds ds ' ds alxa) U, +blxey

dl/
and the PDI becomes the ODE =+ (v =0

which can be casily solved.

Now the DGLAP evolution equations for singlet and
non-singlet structure functions in LO in standard form
are

-$
0; L — L\l'“[{.? i (1= x )JF; (x, 1)+
L

1 (x, 1)+ Is:(x.l)J=0 0
7S
9 _Ac[B4 in (- x)]
dat t
¥ 0)+ 1" (x,l)]= 0 2)
where

w

(1+w=)F§[i.l]-zlf(x.o. G

1
li(xvt)%fo{W”(l-W)z]G 2w, )

£) #Y r) &) ) r°

F)
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( « where Land M are piven by equations (e and (1)
(" Now input function can be defined, when x =
q - - N\ ~
Q“"‘“ s (S ) = I, (x.1). So
> /
Q ri(vr)= ,l.;(\ﬂ_.:)mpﬂ_J:‘h_‘;_’h) 20
) {

X . : :

This s the x- ¢y olution of singlet structare function
e procecding in the same way. we pet tand vevolutions
\ - of non.sinﬂh‘l structure function from r‘qnalim\ (2)as

S_-
(;-h. I::-u ('\")= l-;;#s (X, ln)

(21a)

,\ o F:\'s .\.l)= F:NS(NOJ)

- A {2"-4..\': +~”ll(l_"-)}
—— I
\ lexp I {x -x'-2x In (N)}

o™ 3=y
)

™ respectively.
‘t\

3 The deuteron, proton and ncutron structure
~ functions measured in DIS can be writien in terms of

singlet and non-singlet quark distribution functions as

-
o F (x) = $F5 (x.1), (22a)
= S o L 3 s
“h.:\ F:p(\"):‘]_s_i'z ("’l)+l_8F'.;.(x°l) (22b)
1
_\_3 and
i
N 5 3 .
-;-...:‘ F;(\-l)=]'ngs(xvl)'EF:\s(x-l). (22¢)
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The t ard v-evolutions ot deuteron structure fundtions
can be obtained by putting equatiens (T and 21

: , )7
respectively inthe ¢ quation c22a) as

Fi(var)= B ()

; ,l,g(.‘o'll"("r' I]):‘-' |:‘; ! j""l
LJ
(24
and
) (2\ b
F{ ()= Fy (xgat)expy - f e
"--{1 v - 2udn
7 s 2
u(I -.\'))+ 3 Nk Zox+x-"x
2 3 3
5 ) 2 (23b)
‘}N,k{— “x4300 =200+ = x - rln(,\')]
. 3 3 f
where
’ 5 s
F ("'lo):;Fz (x.1,) (244)
and
d S s '
F; (xo.x)=5Fz (xg.1). (22h)
RESULTS AND DISCUSSICN
In this paper, we compare cur resultei taad s eval iz

of deuteron struciure funciion I ¢ meazur~d by tac
NMC in muon deuteron D3 with incidenl moseatum
90, 120, 200,280 GeV' ' Sinccthe equation(13) and
(21a) as well as (20) and (21k) are not in the same
form. so we need to separate the input fuactions from
the data points to extract the t and x-evolution of proton
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(11a)

where
L = A(x)+ K(Cx)+ DX g (W~

M =B(x)+ k() D () (11b)
(h %) = L (arhitrary

For simphicity fet us consider

constant). Then

. = A(aY 4 L ey
3

=[2x ¢ . 1-lln(l*.\)l l SN.-K

. b
[ -,\I\'O-:.\‘) (11¢)
3 "

3 5
M= [.\ -x' - 2.\1!\(.\‘)]* -i N, k[";“’ + 3’ -

LPST IS |

"
I +=x' - .r\n(,\')}_ (11d)
Let us introduce the new variable S with characteristics
equations
Ir
o= . (124)
ds
X _AM 12b)
as T 2
Putting equations ( 12a) and (12b)in equation ( 10), we
gel
O
“d'—S"+t\,LF: =0, (13
Then equation 13) gives
dF:s B
F} - —A! Lds (14

Here dS can be defined from either equation (12a) or
(12b).

2(a). t - Evolution:

From equations (12a) and ( 14) we get

where C s the co
whenS=0.1=1
Then cquation 15bh) gives

<hva etals Method of... e

17
(”'-]’ C i )
ol :—A"{—T : (150)
Integrating we get
(15h)

Ik, =4, Lin(r)+ C.

pstant of et ation. et us consider,

LSy =EO)

C, = ].':‘ (()) - A, Lln(t,,) (10)

and

AL
S = Fr0 i
1 T ! ) (‘7)
0

o replace the co-ordinate S 1o x, 1) in

Now we havet
t=t,: then the input function

equation 17). when S =0,
515 (0) = F5 (x.15)- S0

) (_\*'[): N (x.1q ]I

-
-

) r\,l(2‘||'i-llll(|'l))t;Nll(-“, i "‘H

Ly
- . - . . (lx)
This is the t- evolution of singlet structure function.

2(h). x - Evolution :
From equation (12b) and (14), we gel

dr L
— -/\I L_._.(_\;—
F, /\J M’
Integrating the above equation we gel
s L
l Fy- = —|— X L)
nir, I,’H d\‘i"C_, (192)

Let when x = x,, then Fls = Fzs (S,)- So

L
C.=InF)(5,)+ b
i Ss)r | Vi (19b)

A= Ag
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Figure 2. Results of t-evolution of deuteron structure function F,* for the given value of x.
‘Data points at lawest-Q? values in the figures are taken as input to tesl the evoluation
equation (23a).
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and neutron structure function. So using equations (22b)
and (22¢). evolutions of proton and neutron structure
functions are not possible. For quantitative analysis, we

consider the QCD cut-off parameter A G:=0.323GeV

120 for o (M2 )= 0119 = 0002 and N = Tis

observed that our result i< very sensitive 1o arbiirny

constant ki tevoluhion and e Ptng s i the ranee
. _ _ ~ Y[

ol (09 =k = 1L In figure 2 for t-evolution, we have

plotied computed values of T ¥ against Q' values for a

Naed

In Ngure (2a). we have plotted the graph for x
=00MS with Q=075 GeV? as the initial point. The
agreement of our result with the data is excellent at k =
L1 Similarly in figures (2b). (2¢) and (2d) for x = 0.008,
= 0.0125 and x = 0.0175 respectively, the computed
values are plotted against the corresponding values of
Q* for the range 0.75 GeV? 10 5.5 GeV?. Here the
input parameters are taken as for Q2= 0.75 GeV? in
first two curves and Q = 1.25 GeV? for the third curve.
1t is found that agreement of these results with data is
excellent for the range 0.8 < k < 0.9. In figure 2, the
solid lines represent the best fitcurves. Except the best.
fit-curves, the dotted lines represent those for k = (0.8
and dashed lines represent for k = 1.1,

In figure 3 for x-cvolution, we have plotted
computed values of F *against the x values for a fixed
Q°. Here we have plotted the graphs for Q2= 11.5, 13,
20 and 27 GeV* for the range of 0.025 = x = 0.14.
Here we have considered the input parameter x = 0.09
for first three curves and x| = 0.14 for the fourth one.
The best value of K is k = 0.5. But as Q? increases the
k value slightly increases. For Q* = 27 GeV?, the
excellent agreement is found for k = 1. Here also the
solid lines represent the best-fit curves. Except best-fit
curves, the dotted lines represent the graphs for k = 1
and dashed line represents for k = 0.4.

Though there are various methods to solve
DGLAP evolution equation to calculate quark and gluon
structure functions, our method of characteristics to
solve these equations is also a reliable alternative.
Though mathematically rigorous, it changes the integro-
differential equations into ODE and then makes it

S

possible 1o obtain unique solutions. As our subsequent
work we can caleulate the tand x - evolution of nucleon
structure functions by considering k (x) = ax"and k (x)
= ce™. Also we will try 1o extend our work to next-to-
leading order (NL.O) at small-x.
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